Code: EC3T6, EE3T6

II B.Tech - I Semester-Regular/Supplementary Examinations

November 2016

SWITCHING THEORY AND LOGIC DESIGN

(Common for EEE, ECE)
Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Convert the gray code 1101 to binary.
b) What do you mean by self-complementing codes, give examples?
c) How can a two input X-OR gate be used as an inverter?
d) State DeMorgan's theorem.
e) What are essential prime implicants?
f) Distinguish between serial adder and parallel adder.
g) How is the size of a PLA is specified?
h) Define counter. List the types of counters.
i) What is a universal shift register?
j) List the capabilities and limitations of FSM.
k) When does two states of a sequential circuit are equivalent?

PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2.
a) Convert the following numbers
i. $(41.6875)_{10}$ to binary
ii. $(1001001.011)_{2}$ to decimal
iii. Find the 9 's complement of number (25.639) $)_{10} \quad 8 \mathrm{M}$
b)
i. Subtract 111001 from 101011 using 2's complement
ii. What are universal gates? Realize AND, OR gates using NAND gate.
3.
a) Using Quine-McCluskey method, minimize the function $f(W, X, Y, Z)=\sum m(0,1,5,7,8,10,14,15) \quad 8 \mathrm{M}$
b)

8 M
i. Find the complement of the function $\mathrm{F}=\mathrm{X}\left(\mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\mathrm{YZ}\right)$
ii. Reduce the following Boolean expression to two literals $\mathrm{F}=\mathrm{A} \bar{B} \mathrm{C}+\mathrm{B}+\mathrm{B} \bar{D}+\mathrm{AB} \bar{D}+\bar{A} \mathrm{C}$
4.
a) Implement the full adder using decoder and OR gates.
b) Implement the following Boolean function using $4: 1$

$$
\operatorname{MUX~F}(A, B, C, D)=\sum m(0,1,2,4,6,9,12,14) \quad 8 \mathrm{M}
$$

5.

a) Compare combinational and sequential circuits. 6 M
b) What is race around condition? How it can be eliminated?
6. Explain the following related to sequential circuits with suitable examples.
a) State diagram

6 M
b) State table
c) State assignment

